Why Beauty Exists: The Neuroscience of Curiosity

I’ve come across a wonderful post over at Lapidarium Notes this morning and cannot help but share. Originally written by Jonah Lehrer in his blog (The Frontal Cortex) Jonah puts forth an speculative (albeit intriguing) theory as to the literal faculty of why beauty exists.

Upon initial reading, I’m taken back to working through my introductory thought process on Hegel’s Philosophy of Art. At first glance, to be completely honest, not only does it seem a bit of a narcissistically beaten-horse, I’ve simply come so near to believing (more than once) that the whole discussion is better left to Kantian scholars of aesthetics; and for the good of the academy, I simply best stay out of it. Au contraire, enter the reason I love plasticity and neuroscience in the first place: with a little dissection, a lot of faith and a very open mind-the potential of our neuronal comprehension is, at this point at least, limitless.

It also brings into play a fundamental reason why I become giddy at the overlap of philosophy, psychology and neuroscience: pragmatism! “Speculative” as Jonah’s theory may be, the minute you bring in data from fMRI and PET scanners, things become a bit more serious. Neuroscience (for me) is a way of turning  highly theoretical abstracts (philosophy) into possibly more practical endeavors (clinical psychology).  Now, before I am the target of hate emails, I am not saying philosophy is not practical, by all means, I find it very much so. I’m speaking in the context more in the arena of bettering the all-encompassing, easily accessible acculturation of society by means we may find in a clinical (or neurologically educational) setting. Jonah has done (as per usual) a splendid job of combining the concepts of arousal, the ‘mental itch’ that is the curiosity of an inquisitive mind, and the usefulness of beauty as learning signal, emotional reminder, and motivational force.

Before I go on and let Jonah explain the study far better than myself, I will say one thing more. Ironically enough, I pin the very moment I knew I wanted to study music and neuroscience concurrently to him. I remember so clearly-a friend had sent me a blank email, except for the link to the post. I often ignore such things, but the respect I had for them academically prompted me to do otherwise. I’ll never forget that evening sitting at my laptop at the local pizza joint reading that article and knowing this is what I had to do. The post, entitled The Neuroscience of Music, can be found here.

The following is taken directly from Jonah’s blog post Why Does Beauty Exist?


“Here’s my (extremely speculative) theory: Beauty is a particularly potent and intense form of curiosity. It’s a learning signal urging us to keep on paying attention, an emotional reminder that there’s something here worth figuring out. Art hijacks this ancient instinct: If we’re looking at a Rothko, that twinge of beauty in the mOFC is telling us that this painting isn’t just a blob of color; if we’re listening to a Beethoven symphony, the feeling of beauty keeps us fixated on the notes, trying to find the underlying pattern; if we’re reading a poem, a particularly beautiful line slows down our reading, so that we might pause and figure out what the line actually means. Put another way, beauty is a motivational force that helps modulate conscious awareness. The problem beauty solves is the problem of trying to figure out which sensations are worth making sense of and which ones can be easily ignored.

Let’s begin with the neuroscience of curiosity, that weak form of beauty. There’s an interesting recent study from the lab of Colin Camerer at Caltech, led by Min Jeong Kang. (…)

The first thing the scientists discovered is that curiosity obeys an inverted U-shaped curve, so that we’re most curious when we know a little about a subject (our curiosity has been piqued) but not too much (we’re still uncertain about the answer). This supports the information gap theory of curiosity, which was first developed by George Loewenstein of Carnegie-Mellon in the early 90s. According to Loewenstein, curiosity is rather simple: It comes when we feel a gap “between what we know and what we want to know”. This gap has emotional consequences: it feels like a mental itch. We seek out new knowledge because we that’s how we scratch the itch.

The fMRI data nicely extended this information gap model of curiosity. It turns out that, in the moments after the question was first asked, subjects showed a substantial increase in brain activity in three separate areas: the left caudate, the prefrontal cortex and the parahippocampal gyri. The most interesting finding is the activation of the caudate, which seems to sit at the intersection of new knowledge and positive emotions. (For instance, the caudate has been shown to be activated by various kinds of learning that involve feedback, while it’s also been closely linked to various parts of the dopamine reward pathway.) The lesson is that our desire for more information – the cause of curiosity – begins as a dopaminergic craving, rooted in the same primal pathway that responds to sex, drugs and rock and roll.

I see beauty as a form of curiosity that exists in response to sensation, and not just information. It’s what happens when we see something and, even though we can’t explain why, want to see more. But here’s the interesting bit: the hook of beauty, like the hook of curiosity, is a response to an incompleteness. It’s what happens when we sense something missing, when there’s a unresolved gap, when a pattern is almost there, but not quite. I’m thinking here of that wise Leonard Cohen line: “There’s a crack in everything – that’s how the light gets in.” Well, a beautiful thing has been cracked in just the right way. (Italics mine)

Beautiful music and the brain

The best way to reveal the link between curiosity and beauty is with music. Why do we perceive certain musical sounds as beautiful? On the one hand, music is a purely abstract art form, devoid of language or explicit ideas. The stories it tells are all subtlety and subtext; there is no content to get curious about. And yet, even though music says little, it still manages to touch us deep, to tittilate some universal dorsal hairs.

We can now begin to understand where these feelings come from, why a mass of vibrating air hurtling through space can trigger such intense perceptions of beauty. Consider this recent paper in Nature Neuroscience by a team ofMontreal researchers. (…)

Because the scientists were combining methodologies (PET and fMRI) they were able to obtain a precise portrait of music in the brain. The first thing they discovered (using ligand-based PET) is that beautiful music triggers the release of dopamine in both the dorsal and ventral striatum. This isn’t particularly surprising: these regions have long been associated with the response to pleasurable stimuli. The more interesting finding emerged from a close study of the timing of this response, as the scientists looked to see what was happening in the seconds before the subjects got the chills.
I won’t go into the precise neural correlates – let’s just say that you should thank your right nucleus accumbens the next time you listen to your favorite song – but want to instead focus on an interesting distinction observed in the experiment:

fMRI and PET results,

In essence, the scientists found that our favorite moments in the music – those sublimely beautiful bits that give us the chills – were preceeded by a prolonged increase of activity in the caudate, the same brain area involved in curiosity. They call this the “anticipatory phase,” as we await the arrival of our favorite part:

Immediately before the climax of emotional responses there was evidence for relatively greater dopamine activity in the caudate. This subregion of the striatum is interconnected with sensory, motor and associative regions of the brain and has been typically implicated in learning of stimulus-response associations and in mediating the reinforcing qualities of rewarding stimuli such as food.

In other words, the abstract pitches have become a primal reward cue, the cultural equivalent of a bell that makes us drool. Here is their summary:

The anticipatory phase, set off by temporal cues signaling that a potentially pleasurable auditory sequence is coming, can trigger expectations of euphoric emotional states and create a sense of wanting and reward prediction. This reward is entirely abstract and may involve such factors as suspended expectations and a sense of resolution. Indeed, composers and performers frequently take advantage of such phenomena, and manipulate emotional arousal by violating expectations in certain ways or by delaying the predicted outcome (for example, by inserting unexpected notes or slowing tempo) before the resolution to heighten the motivation for completion.

While music can often seem (at least to the outsider) like an intricate pattern of pitches – it’s art at its most mathematical – it turns out that the most important part of every song or symphony is when the patterns break down, when the sound becomes unpredictable. If the music is too obvious, it is annoyingly boring, like an alarm clock. (Numerous studies, after all, have demonstrated that dopamine neurons quickly adapt to predictable rewards. If we know what’s going to happen next, then we don’t get excited.) This is why composers introduce the tonic note in the beginning of the song and then studiously avoid it until the end. They want to make us curious, to create a beautiful gap between what we hear and what we want to hear.

To demonstrate this psychological principle, the musicologist Leonard Meyer, in his classic book Emotion and Meaning in Music (1956), analyzed the 5th movement of Beethoven’s String Quartet in C-sharp minor, Op. 131. Meyer wanted to show how music is defined by its flirtation with – but not submission to – our expectations of order. To prove his point, Meyer dissected fifty measures of Beethoven’s masterpiece, showing how Beethoven begins with the clear statement of a rhythmic and harmonic pattern and then, in an intricate tonal dance, carefully avoids repeating it. What Beethoven does instead is suggest variations of the pattern. He is its evasive shadow. If E major is the tonic, Beethoven will play incomplete versions of the E major chord, always careful to avoid its straight expression. He wants to preserve an element of uncertainty in his music, making our brains exceedingly curious for the one chord he refuses to give us. Beethoven saves that chord for the end.

According to Meyer, it is the suspenseful tension of music (arising out of our unfulfilled expectations) that is the source of the music’s beauty. While earlier theories of music focused on the way a noise can refer to the real world of images and experiences (its “connotative” meaning), Meyer argued that the emotions we find in music come from the unfolding events of the music itself. This “embodied meaning” arises from the patterns the symphony invokes and then ignores, from the ambiguity it creates inside its own form. “For the human mind,” Meyer writes, “such states of doubt and confusion are abhorrent. When confronted with them, the mind attempts to resolve them into clarity and certainty.” And so we wait, expectantly, for the resolution of E major, for Beethoven’s established pattern to be completed. This nervous anticipation, says Meyer, “is the whole raison d’etre of the passage, for its purpose is precisely to delay the cadence in the tonic.” The uncertainty – that crack in the melody – makes the feeling.

Why the feeling of beauty is useful

What I like about this speculation is that it begins to explain why the feeling of beauty is useful. The aesthetic emotion might have begun as a cognitive signal telling us to keep on looking, because there is a pattern here that we can figure out it. In other words, it’s a sort of a metacognitive hunch, a response to complexity that isn’t incomprehensible. Although we can’t quite decipher this sensation – and it doesn’t matter if the sensation is a painting or a symphony –the beauty keeps us from looking away, tickling those dopaminergic neurons and dorsal hairs. Like curiosity, beauty is a motivational force, an emotional reaction not to the perfect or the complete, but to the imperfect and incomplete. We know just enough to know that we want to know more; there is something here, we just don’t what. That’s why we call it beautiful.”

 Jonah Lehrer, American journalist who writes on the topics of psychology, neuroscience, and the relationship between science and the humanities, Why Does Beauty Exist?, Wired science, July 18, 2011


6 thoughts on “Why Beauty Exists: The Neuroscience of Curiosity

  1. This may be why classical music increases brain development in babies. There may be a form of logic within the music that strengthens the left caudate towards forming connections between loosely connected information and primal needs.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s