Music, Mind and Meaning Conference at the Peabody Institute – Day 2 Recap

1779146_10100787537465660_2115934_nMusic, Mind and Meaning Conference – Day 2

Friday commenced with the morning keynote delivered by Dr. Ani Patel, entitled Does instrumental musical training enhance the brain’s processing of speech? In Patel’s articulate and informative lecture, he began by drawing our attention to the following: “Music and language have important connections as cognitive and neural systems, and that has implications for theoretical debates about how the mind is organized – for evolutionary studies on the origins of these abilities, and practical issues about remediation of language disorders” (Patel, 2014). Though the parallels in music and language are less novel on account of the publication of his 2008 book Music, Language and the Brain, the implications of instrumental training lending to developments in language and speech are very much so. In conclusion, operating with his extended OPERA hypothesis, Patel emphasizes that regardless of the varying direction and debates these studies may undergo, “Comparative music and language research really does deepen our understanding of human communication.” (Patel, 2014).

Dr. Elizabeth Tolbert spoke next, providing an evolutionary perspective in Music, Meaning and Becoming Human. Approaching the co-evolution of music, meaning and social intelligence, Tolbert addressed music as a behavior, not object; of possessing a social ontology, and its implicational model as derived from social interaction, shared intentionality and social intelligence. Her overarching thesis states “the story of becoming human is the story of the development of a specifically human type of meaning rooted in social intelligence, and one that likely has its origins in proto-musical behavior.” (Tolbert, 2014).

IMG_9286Dr. Ian Cross’s lecture entitled Music, Participation and Interaction further expanded on the day’s existing idea of music not only as a “practice composed by the few and consumed by many,” but as the encompassment of interactive processes far beyond a role of abstract structures, symbolic realms or lofty themes. As uniquely flexible and socially cooperative creatures, humans are capable of utilizing music as not only a mode of communicating information and ideals, but at times as phatic organisms. Cross went on to explain with conviction that if this theory were more widely considered, the insinuation might result in music being given the proper chance to utilize it’s more pragmatic magic in resolving social uncertainties (and thus social anxiety), provide powerful effects on memory and social attitude, and “provide us with new perspectives on the investigation of music beyond the bounds of Western culture” (Cross, 2014).

The second keynote, Losing the Beat: A New Window on Human Rhythm was given Dr. Isabelle Peretz (University of Montreal). Peretz has published over two hundred and fifty five scientific papers regarding everything from perception, emotion and memory to singing and dancing. In Losing the Beat, Peretz explained that a defining characteristic of human interaction with music is “the identity and ability to move to the beat.” Although this universal faculty is typically formed early in life, her recent research shows that some individuals suffer from the inability to synchronize with beats in music. This disorder is referred to as beat deafness, a new form of congenital amusia. In her presentation, Peretz conveyed a strong sensibility for the cause of studying musical disorders in regard to “reverse-engineering of the musical brain” (Peretz, 2014).

IMG_9311Later in the afternoon, Andrea Halpern took the floor to share her work on auditory imagery, and to describe her study examining the neural loci of imagined music. Halpern is a pioneer in her long-standing devotion to the field from early in its development. She has contributed fundamental work on memory and perception of musical structure, including studies on earworms and the persistence of musical memories), effects of timbre and tempo change, and perception of emotion in sounded and imagined music. In her presentation Auditory Imagery: Linking Internal and External Music, Halpern presented the argument that although internal and external music experiences are distinctive encounters, they share a number of important similarities, which both musicians and nonmusicians can exploit to enhance the musical experience.

Photo 1 – Diana Hereld

Photos 2, 3 – Scott Metcalfe

Note: I must include an apology for the delay in reporting on the conference this weekend. I simply found myself so wonderfully overwhelmed with information (but overwhelmed regardless) that I was unsure how to encapsulate the day’s culmination of so many brilliant minds in presentation of their most recent work. As a result, I’ve decided to report individually on each of them in the near future. A few other outlets have picked up specific coverage, and I will advise as those are released. I will also be sharing a summation of the conference’s concluding rountable featuring the speakers and performers, which was truly a thing to behold.

Music, Mind and Meaning Conference at the Peabody Institute– Day 1 Recap

IMG_9755 Music, Mind and Meaning Conference – Day 1

Apart from the seventy (yes, seventy) degree temperature shock going from Los Angeles to Baltimore, I had a wonderful evening at the opening of the Music, Mind and Meaning conference at the Peabody Institute. The evening began with rousing introductions all around, and I was wonderfully honored to finally meet some of my favorite scholars face to face.

At 7pm, Dr. David Huron took the floor for the keynote address. In his talk, “Emotions and Meanings in Music, he posed the question, “In what ways can music convey meaning?” Songs have lyrics, works have evocative titles, but most of music’s meaning comes from other sources including:

  • Cultural schemas
  • Learned expectations
  • Personal associations

In his over sixty minute presentation, Huron covered everything from how musical associations become universal cultural icons, to the psychoacoustics of intimacy (which contained brilliant perspectives I had never visualized), to an explicitly detailed account of how ethologists differentiate between signals versus cues, and what we can take from learning about hostile versus friendly behavior in animals to musical studies. Since my arrival, I’ve listened to one out of nine lectures, and am, at present, blown away. Let’s just say this: you know it’s good when you have world-class academics on either side murmuring in awe at what is being presented. I look very forward to recounting the full presentation when time permits.

Following Dr. Huron’s talk, a duo took the stage like I haven’t quite seen before. I’d venture it’s not uncommon, but when Grammy-nominated pianist and composer (and MacArthur genius fellowship recipient) Vijay Iyer improvises a single-song performance – for thirty-five minutes nonstop – one listens. Joined by Gary Thomas (Director of Jazz Studies, Peabody) on the saxophone followed by flute, the enigmatic chemistry that was created simply devoured the room like a thick trance. One of my favorite enigmas of the evening was simply glancing down the two rows of conference speakers to see who was bobbing side to side, or front to back; the eyes that were closed or engaged, or (my favorite) watching the woman who periodically plugged her ears as if to reimagine what she had just heard.

The evening closed with a reception lasting well past eleven in the Peabody library. Accompanied by a presentation of the exhibit from the personal collection of Eugene S. Flamm, the final talk included introducing some of the very oldest texts surrounding neurosurgery and the cradle of medicine known to exist. I look very forward to the continuance and development of the conference tomorrow morning.

Neurophysiological and behavioral responses to music therapy in vegetative and minimally conscious states

(O’Kelly J1,2, James L1, Palaniappan R3, Taborin J4, Fachner J5, Magee WL6)

1 Research Department, Royal Hospital for Neuro-disability, London, UK; 2 Dept. of Communication and Psychology, Aalborg University, Aalborg, Denmark; 3 Faculty of Science and Engineering, Wolverhampton University, Wolverhampton, UK; 4 Dept. of Neuroscience, King’s College London, London, UK; 5 Depat. of Music and Performing Arts, Anglia Ruskin University, Cambridge, UK; 6 Boyer College of Music and Dance, Temple University Philadelphia, Philadelphia, PA, USA

Assessment of awareness for those with disorders of consciousness is a challenging undertaking, due to the complex presentation of the population. Debate surrounds whether behavioral assessments provide greatest accuracy in diagnosis compared to neuro-imaging methods, and despite developments in both, misdiagnosis rates remain high. Music therapy may be effective in the assessment and rehabilitation with this population due to effects of musical stimuli on arousal, attention, and emotion, irrespective of verbal or motor deficits. However, an evidence base is lacking as to which procedures are most effective. To address this, a neurophysiological and behavioral study was undertaken comparing electroencephalogram (EEG), heart rate variability, respiration, and behavioral responses of 20 healthy subjects with 21 individuals in vegetative or minimally conscious states (VS or MCS). Subjects were presented with live preferred music and improvised music entrained to respiration (procedures typically used in music therapy), recordings of disliked music, white noise, and silence. ANOVA tests indicated a range of significant responses (p = 0.05) across healthy subjects corresponding to arousal and attention in response to preferred music including concurrent increases in respiration rate with globally enhanced EEG power spectra responses (p = 0.05-0.0001) across frequency bandwidths. Whilst physiological responses were heterogeneous across patient cohorts, significant post hoc EEG amplitude increases for stimuli associated with preferred music were found for frontal midline theta in six VS and four MCS subjects, and frontal alpha in three VS and four MCS subjects (p = 0.05-0.0001). Furthermore, behavioral data showed a significantly increased blink rate for preferred music (p = 0.029) within the VS cohort. Two VS cases are presented with concurrent changes (p = 0.05) across measures indicative of discriminatory responses to both music therapy procedures. A third MCS case study is presented highlighting how more sensitive selective attention may distinguish MCS from VS. The findings suggest that further investigation is warranted to explore the use of music therapy for prognostic indicators, and its potential to support neuroplasticity in rehabilitation programs.

For our Italian friends:

La determinazione dello stato di consapevolezza nei pazienti che soffrono di riduzione della coscienza è un compito estremamente difficile, dovuta all’eterogeneità dei casi. Esiste un dibattito rispetto a quale indagine fornisca la maggiore accuratezza della diagnosi: indagine comportamentale rispetto ai metodi di neuroimmagine. Nonostante i notevoli passi avanti fatti in entrambi i campi, gli errori di diagnosi restano piuttosto alti. La musicoterapia può essere efficace nell’indagine e nella riabilitazione di queste persone grazie all’effetto della musica su stato di vigilanza, attenzione ed emozioni, indipendentemente dai deficit motori e verbali del paziente. In ogni caso, non esistono studi basati sull’evidenza che indichino quale dei due metodi sia più efficace. Per questo gli Autori propongono uno studio neurofisiologico e comportamentale che compara l’EEG, la variabilità del battito cardiaco, la respirazione e le risposte comportamentali di 20 individui sani con 21 pazienti in stato vegetativo o di minima coscienza (VS o MCS). Ai soggetti è stata presentata una selezione della musica preferita e di musica improvvisata adeguata al ritmo respiratorio (una proceduta tipica della musicoterapia), registrazioni di musica sgradita, rumore bianco e silenzio. L’analisi ANOVA indica un range di risposte rilevanti (p=0.05) tra i volontari sani corrispondente a un incremento dell’attenzione in risposta alla musica preferita, che include l’aumento concomitante del ritmo respiratorio e della potenza dello spettro EEG (p=0.05-0.0001) in tutte le bande di frequenza. Mentre le risposte fisiologiche erano eterogenee nella coorte dei pazienti, si notava un miglioramento significativo post hoc nell’ampiezza dell’EEG in risposta alla musica preferita, evidente nel theta della linea frontale mediana in sei VS, e quattro MCS e della banda alfa frontale in tre VS e quattro MCS (p=0.05-0.0001). Inoltre, i dati comportamentali mostravano un significativo incremento nel ritmo di battito delle ciglia in presenza della musica preferita (p=0.029) nei pazienti VS. Due casi in VS hanno evidenziato cambiamenti correlati fra le due misure che dimostrano una reattività a entrambi i tipi di musicoterapia (p=0.05). Un terzo caso MCS è stato illustrato per sottolineare come l’attenzione selettiva possa distinguere gli MCS dai VS. Questi dati suggeriscono che sia auspicabile un approfondimento degli studi per esplorare l’uso della musicoterapia come indicatore prognostico, e valutarne l’uso come supporto per la neuroplasticità in riabilitazione.

(Open access article, creative commons, December 2013).  

Music, Mind, Meaning Conference 2014 at the Peabody Institute of Music

peabody library (January 30-31, Baltimore, MD) The Music, Mind and Meaning Conference will bring together scientists from the field of music cognition  and renowned musicians for a two-day event to explore the relationships between music and science at the Peabody Institute of Music. The events will include presentations from leading scientists and a special musical performance by the Grammy-nominated jazz pianist Vijay Iyer and tenor saxophonist Gary Thomas, Chair of Jazz Studies at Peabody. Keynote speakers will be Drs. David Huron, Aniruddh Patel, and Isabelle Peretz, three remarkable scientists who have led groundbreaking studies of how and why people have engaged in musical behaviors throughout human history. Conference participants will include scientists, clinicians, musicians, students and interested members of the public. Presentations will explore the idea of musical meaning by examining issues of expectation, creativity, evolution, culture, language, emotion and memory from the viewpoint of cognitive psychology, musicology and auditory neuroscience. The conference is generously supported by a conference grant from the Brain Sciences Institute at the Johns Hopkins University School of Medicine. For more information visit http://www.mmmbaltimore2014.org/.

I will be attending and covering this conference, so please feel free to follow me on Twitter @pathwaysinmusic and look for coverage here directly following. A special thanks to Mr. Cooper McClain for making this trip possible.

Valproic Acid for Perfect Pitch? Steady, Now…

FDA_seizure_drug_DepakoteFor the past few days, the internet has been abuzz with the announcement of the “perfect pitch miracle drug.” Let’s back up a bit, shall we?

Valproic acid has been used alone or in addition to other medications for nearly fifty years to treat epilepsy, and is the active ingredient in drugs such as Valproate and Depakon. It is also used in the prevention of migraines, mania in bipolar disorder and for the treatment of aggression exhibited in children with ADHD. It is in the class of anticonvulsants. To talk a little bit about how it works, our brain is made up of thousands of nerve cells that communicate back and forth via electrical signal, a very intricate and delicate process that need maintain a steady and stable balance for normative functioning. When repetitive and abnormally rapid electrical signals are released, this process becomes disturbed and over stimulated. Anticonvulsants such as Valproate function as a stabilizer by increasing the amount of the natural nerve-calming chemical GABA, (gamma-Aminobutyric acid), as an HDAC (histone deacetlyase) inhibitor (Monti et al., 2009). GABA is one of the brain’s chief inhibitory neurotransmitters, which many researchers believe to regulate anxiety. When the amount of GABA in the brain falls too low, Valproate prevents the breakdown of the chemical and works to stabilize the amount of electrical activity, which explains why the drug has been found effective as a treatment for periods of mania and epileptic seizures.

Unfortunately, valproic acid is far from the ideal end-all. Valproate has been known to potentially cause serious or life threatening damage to the liver, pancreas, and blood cells, and holds an alarmingly high statistic for weight gain. It is not approved for use during pregnancy and breastfeeding, and has recently been the target of a lawsuit due to unforeseen birth defects. It is also known to cause ataxia, thrombocytopenia and leucopenia, so before we all go rushing off to “increase our brain function,” it might be wise to spend a moment thinking critically.

This morning, Tom Ashbrook of On Point, NPR stated “Imagine a pill that could rewire your brain. Would make your brain young again. Able to learn and absorb like a five-year old. Music. Languages. Would you take it?”  Neuroplasticity has risen to near-celebrity status over the past few months, and recent study by Frontiers of Systems Neuroscience is certainly fanning the flame. Carried out by researchers from France, Canada, Maryland, Australia, Massachusetts and England, the study set out to discover whether such periods when enzymes “impose ‘brakes’ on neuroplasticity, might be able to “reopen critical periods of neuroplasticity” via a drug that blocks productions of those enzymes. Absolute pitch was thought to be a solid assessment of this possibility because there are “no known cases of an adult acquiring absolute pitch.”

Absolute pitch (AP) is the ability to identify or produce the pitch of a musical sound without any reference point. Individuals who possess AP, constituting about 0.01% of the general population, are able to identify the pitch class, i.e., one of the 12 notes of the Western musical system, e.g., C, D, G#, of a sound with great accuracy (varying between 70–99%, depending on the task, as compared to 10–40% for non-AP individuals, Takeuchi and Hulse, 1993). The study explains:

“Importantly, acquiring AP has a critical period (Levitin and Zatorre, 2003; Russo et al., 2003). A critical period is a fixed window of time, usually early in an organism’s lifespan, during which experience has lasting effects on the development of brain function and behavior. The principles of critical period phenomena and neural plasticity are increasingly well understood both at the behavioral/experiential (Kleim and Jones, 2008) and at the molecular/cellular level (Hensch, 2005). Specifically, behaviorally induced plasticity in the healthy brain, typically after the end of the relevant critical period, can lead to improvement beyond normal or average performance levels. However, for many tasks, this requires targeted training—simple routine use is often insufficient. The factors known to influence the efficiency of such targeted training include the number of repetitions involved, the intensity of the training as well as the relevance or saliency of the stimuli or task trained. Importantly, such training-induced learning is quite specific to the trained task and to the underlying brain networks, although some transfer to other, related domains of knowledge or skills is sometimes possible. At the cellular level, critical periods close when maturational processes and experiential events converge to cause neuoro-physiological and molecular changes that dampen or eliminate the potential for further change (Hensch, 2005Bavelier et al., 2010), thus imposing “brakes” on neuroplasticity. One of the epigenetic changes leading to decreased plasticity after the critical period involves the action of HDAC, an enzyme that acts as an epigenetic “brake” on critical-period learning (Morishita and Hensch, 2008Qing et al., 2008). Research has shown that inhibition of HDAC can reopen critical-period neuroplasticity in adult mice to enable recovery from amblyopia (Putignano et al., 2007Silingardi et al., 2010), and to facilitate new forms of auditory learning (Yang et al., 2012).” (http://www.frontiersin.org/Journal/10.3389/fnsys.2013.00102/full ).

The randomized, double blind study was conducted on twenty four men, half of which received Valproate and the other half, a placebo. The men who received Valproate showed advantage in pitch class identification. To come to the conclusion, it is imperative that we acknowledge the fact that these powerful pharmaceuticals were in no way developed for something so “trivial” of the acquisition of perfect pitch – the diagnostic simply was appropriate for a brief and extremely small study and subject pool. The researchers conclude:

If confirmed by future replications, our study will provide a behavioral paradigm for the assessment of the potential of psychiatric drugs to induce plasticity. In particular, the AP task may be useful as a behavioral correlate. If further studies continue to reveal specificity of VPA to the AP task (or to tasks on which training or intervention is provided), critical information will have been garnered concerning when systemic drug treatments may safely be used to reopen neural plasticity in a specific, targeted way.”

It is vital during this time of exponential and rapid advances in the realm of neuroscience that we keep the grounding measures of ethics and morality at the forefront of our minds. There is a reason performance enhancing drugs are strictly forbidden in competitive sports. While it is truly of great interest to deliberate over the implications of a drug altered to target neuroplasticity, with great power (all together now) comes great responsibility. 

Photo credit: http://sheller.com/practice-areas/practice-areas.php?title=Depakote-divalproex_sodium

Music and Memory 2014 Columbia Music Scholarship Conference

CMSCThe tenth annual Columbia Music Scholarship Conference (CMSC) will be held on March 8, 2014 at Columbia University in the City of New York. The theme of the 2014 meeting is Music and Memory. The conference is organized by graduate students from the Department of Music at Columbia University with financial support from the Department of Music and the Graduate Student Advisory Council.

The conference welcomes Prof. Jonathan Sterne from the Department of Art History and Communication Studies, McGill University as the 2014 keynote speaker. Prof. Sterne teaches in the Department of Art History and Communication Studies and the History and Philosophy of Science Program at McGill University. He is author of MP3: The Meaning of a Format (Duke 2012), The Audible Past: Cultural Origins of Sound Reproduction (Duke, 2003); and numerous articles on media, technologies and the politics of culture. He is also editor of The Sound Studies Reader (Routledge, 2012). His new projects consider instruments and instrumentalities; histories of signal processing; and the intersections of disability, technology and perception.

Burgeoning interdisciplinary inquiry on memory is enabling scholars to develop new perspectives in a diverse array of fields ranging from history, anthropology, sociology, literary studies, art history, archeology, cultural studies, and media studies, to philosophy, political science, theology, education, psychology, and the cognitive sciences. This conference will add to this growing interdisciplinary conversation about memory in the sciences, arts, and humanities, stimulating a dialogue both on the role of memory in music studies and on the place of music in studies of memory.

The conference seeks to consider the complexity of memory’s embeddedness in music’s practices, subjects, objects, ideologies, sites, and technologies. Interests lie in memory as lived, constructed, represented, performed, transmitted, inscribed, incorporated, and stored, as persisting, travelling and circulating, as material and immaterial, human and non-human, as a capacity and a resource that impacts and shapes everyday lives. In what ways can memory influence musical practice, and in what ways can musical practice influence memory? How might memories be theorized musically? What can music scholars offer to memory studies, and memory scholars to music studies?

Information provided by the CMSC website.

 

Ground-breaking study shows music capable of evoking memories in patients with acquired brain injuries

Music has long been shown to aid in the recollection of autobiographical memories in the general population. In recent years, it’s also been proven beneficial to those with Alzheimer’s, or those who have suffered a stroke. However, a recent study proves this process valuable for patients with acquired brain injuries (ABIs). This study is the very first of its kind to examine the possibility of triggering music-evoked autobiographical memories (MEAMs) in patients of this nature.

In the recent issue of Neuropsychological Rehabilitation, Amee Baird and Séverine Samson explain how they have used popular music to help patients with severe brain injuries recall personal memories. The study began with playing extracts from “Billboard Hot 100” number-one songs in random order to five patients taken from the entirety of the patient’s lifespan (commencing age five). These songs were also played to five control participants with no brain injuries. Following the procedure, all subjects were ask to record their familiarity with the given songs, whether or not they was pleasing to hear, and what memories they evoked. The following findings were provided by the Taylor & Francis group:

Doctors Baird and Samson found that the frequency of recorded MEAMs was similar for patients (38%–71%) and controls (48%–71%). Only one of the four ABI patients recorded no MEAMs. In fact, the highest number of MEAMs in the whole group was recorded by one of the ABI patients. In all those studied, the majority of MEAMs were of a person, people or a life period and were typically positive. Songs that evoked a memory were noted as more familiar and more liked than those that did not.

As a potential tool for helping patients regain their memories, Baird and Samson conclude that: “Music was more efficient at evoking autobiographical memories than verbal prompts of the Autobiographical Memory Interview (AMI) across each life period, with a higher percentage of MEAMs for each life period compared with AMI scores.”

The full study may be found here.

The implications of these findings, in terms of neurological rehabilitation through music, memory, and emotion, are simply enormous. I look very forward to learning more of what the inimitable effects of music may have for those whose hope relies in neurological and psychological resilience.

What Dreams May Come : Neural Substrates in Resilience

To be, or not to be, that is the question:
Whether ’tis Nobler in the mind to suffer
The Slings and Arrows of outrageous Fortune,
Or to take Arms against a Sea of troubles,

-Shakespeare, Hamlet

On December 5, 2013, Neuron published case study “The Will to Persevere Induced by Electrical Stimulation of the Human Cingulate Gyrus.” Although researchers at Stanford University came across these intriguing results by accident, the implications may prove in the future to be of some consequence. In order to gain knowledge in the neurological source of seizures, study co-author Vinitha Rangarajan explains they were in the process of delivering an electrical charge to the anterior midcingulate cortex region (involved in emotion, pain and cognitive processing) of two persons with epilepsy when the finding occurred. When the charge was delivered, both individuals experienced increase in heart rate, and various sensations in their chest and neck. These physiological sensations were accompanied by a psychological expectation of challenge, and the desire to surmount it.

When, in following, the patients only thought their brains were being stimulated (but were not), they did not experience any of the prior symptoms. This process of assumed stimulation was repeated 5mm away, with the same result – an absence of any or the previous physical or psychological effects. In a press release, lead author Dr. Parvizi explains “Our study pinpoints the precise anatomical coordinates of neuronal populations, and their associated network, that support complex psychological and behavioral states associated with perseverance.” Dissimilarities in this neuronal structure may be tied to innate differences in our capacity to cope and endure amid trying circumstances.

The study highlights dictate:[i]

  • Electrical stimulation of the anterior cingulate region performed in two subjects
  • A stereotyped set of cognitive and autonomic changes was elicited in both subjects
  • This included feeling of anticipated challenge and strong motivation to overcome it
  • Site of stimulation in both subjects was a core node of the brain’s salience network

Summary

Anterior cingulate cortex (ACC) is known to be involved in functions such as emotion, pain, and cognitive control. While studies in humans and nonhuman mammals have advanced our understanding of ACC function, the subjective correlates of ACC activity have remained largely unexplored. In the current study, we show that electrical charge delivery in the anterior midcingulate cortex (aMCC) elicits autonomic changes and the expectation of an imminent challenge coupled with a determined attitude to overcome it. Seed-based, resting-state connectivity analysis revealed that the site of stimulation in both patients was at the core of a large-scale distributed network linking aMCC to the frontoinsular and frontopolar as well as some subcortical regions. This report provides compelling, first-person accounts of electrical stimulation of this brain network and suggests its possible involvement in psychopathological conditions that are characterized by a reduced capacity to endure psychological or physical distress.

In brief departure, I am reminded of William James’ thoughts on the notion of the “threshhold.”

Recent psychology has found great use for the word ‘threshold’ as a symbolic designation for the point at which one state of mind passes into another. Thus we speak of the threshold of a man’s consciousness in general, to indicate the amount of noise, pressure, or other outer stimulus which it takes to arouse his attention at all. One with a high threshold will doze through an amount of racket by which one with a low threshold would be immediately waked. Similarly, when one is sensitive to small differences in any order of sensation we say he has a low ‘difference-threshold’- his mind easily steps over it into the consciousness of the differences in question. And just so we might speak of a ‘pain-threshold,’ a ‘fear-threshold,’ a ‘misery-threshold,’ and find it quickly overpassed by the consciousness of some individuals, but lying too high in others to be often reached by their consciousness.[ii]

What is it that allows some individuals to fall off the horse fifty times, only to get back up fifty one? To attend one hundred grueling auditions whilst retaining the hope and inertia to continue showing up? To find love and then betrayal, and yet continue to open one’s heart to the vulnerabilities of emotion? Findings such as these in neuroscience are critical to the understanding of pain, fear, and crisis thresholds, and leave many open pathways for discovery in the realm of physical and psychological resilience.

To be, or not to be, that is the question:
Whether ’tis Nobler in the mind to suffer
The Slings and Arrows of outrageous Fortune,
Or to take Arms against a Sea of troubles,
And by opposing end them: to die, to sleep
No more; and by a sleep, to say we end
The Heart-ache, and the thousand Natural shocks
That Flesh is heir to? ‘Tis a consummation
Devoutly to be wished. To die, to sleep,
To sleep, perchance to Dream; Aye, there’s the rub,
For in that sleep of death, what dreams may come,
When we have shuffled off this mortal coil,
Must give us pause.

neurons


[i] Parvizi J, Rangarajan V, Shirer W, et al. The Will to Persevere Induced by Electrical Stimulation of the Human Anterior Cingulate Cortex. Neuron. 2013.

[ii] The Varieties of Religious Experience, New York: Longmans, Green, 1916. Originally published in 1902.

Damasio on The Origins of Creativity (A Philosophy of Art, Part II).

damasio

On Saturday, the Society for Neuroscience presented the Fred Kavli Public Symposium on Creativity. Chaired by Antonio Damasio, presenters included composer Bruce Adolphe, clinical psychologist Kay Redfield Jamison (An Unquiet Mind) and Damasio himself. Each speaker depicted a unique portrait in examples of creations, collaborations and the psyche behind it – Jamison through beautiful insight into the correlation of madness to creativity; Adolphe via imagination in his portrayal of a musical composition in alliance to mental illness.

It was Damasio, however, that really caught my attention in the vein he chose to depict what it is to create. He began, “Creativity is largely human – it is entirely a product of the mind, a product of mind-making brains. It assists life regulation (homeostasis).”[i] Long before there was even the option of achieving a balance of survival, there were simply eukaryotic cells, operating unconsciously. From there came the brain, then the mind, and from there, the self. For Damasio, to construct consciousness, the brain uses the mind (the basic component) and the self (where consciousness comes to light). “Creations are original products of the mind. Creativity is the engendering of such projects – ideas, objects, activities, etc. The self engenders a concern for the life proceedings, and it allows individuals to seek well-being, a state far more complex and difficult to obtain than mere survival. It is only then that the game of life changes radically, and we move from blind biology to the rebellious determination that brings on complex social behavior and eventually culture and civilizations…Art can only emerge then, and it becomes a critical component of that cultural evolution.”[ii]

Before creating a discourse in cultural necessity, let us briefly consider the biological. The cognitive and neural substrates shown between the processes of existing on the creating end, and those on the end of perceiving the created, reveal undeniable similarities. Although the means and neural activations certainly reveal a contrast (for example, portrait painting might activate the fusiform gyrus behind facial recognition, while recognizing expression in the portrait may illuminate the occipital lobe or the amygdala). Much of their motive and affect illustrate many parallels. In creating art, one basic but essential component is being able to utilize skills drawn from learning and memory recall. The creator need use their procedural memory, such as memories storing unconscious learnt skills (such as riding a bike or laying one’s fingers to the piano keys), and declarative memory, in the means of episodic memories (evoked from personal experiences) or semantic (the recall of facts, such as adhering to the accidentals of F minor).

In addition to memories summoned on behalf of the creator, Damasio further explains many of the same tools used in processing and affect are utilized on the opposing end. For the observer, the fluid interplay of remembrance, recalled emotions and feelings oft lead to analysis and reflection (be it superficial or profound). Prior experience with the particular art form (connoisseurship) shapes the observer’s ability to evaluate and enjoy what they have either sought or been presented. Individual preference determines distinctions in imagination and the breakdown/composition of elements in much the same way the creator embarks in posing the question “How novel is it, and how much does it fit the original goal defined?” As Damasio states, “On the mind-brain side of it, you have the importance for imagination, and of memory recall (the ability to display working memory’s faces and realize what it imagined). All of this needs to be modulated by affective experience. The moment you think about this in pure, non-affective cognitive terms, you very simply throw away the baby with the bathwater. It is the guidance that comes from the affective process from the emotional drive and the feeling that is going to make it work, or not.”[iii]

In circling back to the evolutionary underpinnings and origins of art in the physical, musical or visual realms, we retain that both the creator and receiver’s pursuit of art responding to their conscious (or unconscious) recognition of problems and needs. Humanity requires a method of processing, reasoning and making decisions, which the object theoretically should fulfill in its obligation of response. One could easily draw the conclusion that there existed a need (and therefore objective) to communicate with others. Damasio describes threats and opportunities, varying social behaviors, or conveying one’s own sorrow or joy as the probable key intents of communiqué. When these conversations were successful, and were found to be of positive effect, there came to being a compensatory balance. He arrives at a notable point in the seemingly obvious: How would the arts have prevailed otherwise?

Art responds to a need. Art fulfills the wont for intellectual enrichment, satisfies an otherwise empty void for many social contexts and institutions, lends much to the progress of science and technology, and realizes the desire for a more purposeful life existentially. The epic poems of Homer or Ovid are a significant example of a transaction for interaction of information. Prior to the enormous maturity and proliferation of science, literature was a vital method of imparting knowledge and fundamental means of exploration. We observed this heavily is the rise of psychoanalysis at the turn of the century, later by film, and now by neuroscience.

In addition to the evolutionary value of being able to communicate general information, Damasio posits the second largest catalyst for creativity was not only a mechanism of bonding and attachment (i.e. parent to offspring or in reproduction, male to female) but a means to induce nourishing emotions and feelings of varied kinds and importance, such as fear, anger, joy, sadness, indignation, revenge, pride, contempt, shame, loyalty and love. Damasio submits that music does this most of all-most importantly and most universally. The discovery of pleasure in reaction to varying timbres, pitches, rhythms and their relationship to each other surely contributed to the indispensable invention and persistence of this art form – relationships which were discovered in a setting of play, and of repetition.

The foundations of creativity and constructions of art were crucial to the formation of society and to the evolution of humanity in not only the aesthetic sense, but also one of ethics. They promoted a sense of communal organization, and directly provided a mode of exercising moral judgment and moral action. The arts had a candid survival value in forming communication for calls of alarm or opportunity, and they contributed to the notion of well-being. The arts fortified social groups, and social groups in turn fortified creativity. The impulse to create and as a result embrace new and adaptive behaviors possibly even helped humans transcend the Paleolithic era.[iv] They contributed to an exchange of ideas and compensated for emotional imbalances caused by fear, anger, desire, sadness and loss, and catalyzed the sustained process of establishing social and cultural institutions. Because art is so heavily founded in biology, thus homeostasis, and can take us to the highest realms of thought and of feeling, art is an authentic means into the refinement humanity most desires.

 Three years later, much has changed in my life. Three years ago, my father, a singer and profound example of an artist’s command of control and heavenly motive, was still alive. So was a dear friend, who gave me my first book on Jackson Pollock to “stretch my artistic enjoyment.” Much has changed. Much has been found, and lost. Through all the things I have learned and gained, what propels me the most in intellectual, academic and moral pursuits remain: the search for beauty, knowledge, hope, and resilience. I have more than one jealous muse – neuroscience, poetry, dance, psychology, affection, seeking the coveted childlike wonder of the sky’s blanket before dawn – and music most of all. These things are all meaningless, all futile, however, devoid of passion for the refinement and rediscovery of buoyancy, integrity, compassion and love. There are a great many things in art and life that I do not understand, and will never understand. It is the greatest comedy, the most schizophrenic irony of all to be human, in a constant pursuit of perfection that will never be obtained. The alternative is contentment, dormant satisfaction, apathy. This, I reject. If time will not pause while I find my way, it stands to reason that by inertia I will keep going, keep attempting, regardless. If I am to undergo this fallen, fleeting existence of tragic loss and immeasurable joy in the means most true to my human nature, I will do so with art.

After all, in the words of Damasio, when we undergo art, we change for the better.

cupid and psyche


[i] Damasio, Antonio. (November 9, 2013). Fred Kavli Public Symposium on Creativity. Neuroscience 2013. Society for Neuroscience, San Diego.

[ii] Damasio, Antonio. (June 11, 2009).Evolutionary Origins of Art and Aesthetics: Art and Emotions. CARTA (Center for Academic Research and Training in Anthropogeny). Salk Institute, La Jolla.

[iii] Damasio, Antonio. (November 9, 2013). Fred Kavli Public Symposium on Creativity. Neuroscience 2013. Society for Neuroscience, San Diego.

[iv] ibid

Essential Limitations in current Neurochemical Studies of Music

Essential Limitations in current Neurochemical Studies of Music

by James A. W. Gutierrez, Azusa Pacific University, college of music and art, adjunct prof.

In April, 2013, Mona Lisa Chanda and Daniel Levitin published “The Neurochemistry of Music”, which presents “peer-reviewed scientific evidence” supporting claims that musical influences may correspond directly with neurochemical changes, specifically correlating “musical reward” with dopamine/opioids, stress relief with cortisol, and musical “social bonding” with oxytocin/vasopressin. Ideally, the music-as-medicine pursuit is pure in its intent toward the relief of human suffering, be it behavioral/emotional//physical/social, through a more natural medium than, say, pychosomatic drugs. However, such a strong quantification of music, and generalization of musical elements, invokes the familiar pharmaceutical path where an ambitious medical community responds to a irreducibly complex system of sociobehavioral situations with a grossly oversimplified, pill-sized answer. While there are certainly clinical uses for music, the first mistake a clinician could make, and hence the primary abuse of both music and a patient, would be to attempt to incarnate, confine to physical flesh, the essentially abstract expressive form that is music.

Such extreme reductions in musical semiotics are prevalent throughout current experimentation involving dopamine and opioids. Levitin reports: “Pleasant (consonant) and unpleasant (dissonant) music were contrasted, and the results conformed activation of the ventral striatum during pleasurable music listening.”[2] In tests examining the effect of music on the stress hormone cortisol Levitin reports: “Relaxing music mimics soothing natural sounds such as maternal vocalizations, purring and cooing (soft, low-pitched sounds with a gradual amplitude envelope), which decrease sympathetic arousal.”[3] When observing levels of polypeptides serum oxytocin and vasopressin (currently thought to regulate social behavior) Levitin reports: “a single 30-minute voice lesson was associated with an increase in serum oxytocin levels relative to a pre-lesson baseline in both professional and amateur singers” and “open-heart surgery patients who listened passively to experimenter-selected soothing music for 30 minutes one day after surgery has higher levels of serum oxytocin compared to bed-rest alone.” [4]

The systematic placement of music in such generalized categories as consonant=pleasure/dissonant=stress, “relaxing” music, etc., with the expectation of uniform results only demonstrates the assumption on the part of the experimenter that music, as represented by a particular style/tempo/dynamic range/etc., should behave as a static unit even in the testing of a broad diversity of listeners. Not only does this ignore the music biases of the experimenter, the testing environment all but extinguishes the affective contexts in which real music listening would be experienced. Could not a familiar yet up-tempo progressive rock song be “relaxing”? Perhaps the oxytocin levels post-singing lesson involved factors such as familiarity, personal connection/association, successful performance in front of an intimidating tester, or perhaps it could just maybe have been the lyrics of the song? Could not “dissonant” music be “pleasurable”? It is precisely the paradoxical nature of musical pleasure that makes musical expression unique, and problematizes this whole method of research. As Oscar Wilde observes- “After playing Chopin, I feel as if I had been weeping over sins that I had never committed, and mourning over tragedies that were not my own.”[5] Would this response be observable in his dopamine/opioid levels?

It could be objected that it is merely seeing music in the context of scientific scrutiny that makes a musician uncomfortable, a kind of ‘we don’t belong here’ awkwardness. Could it be that I am simply afraid that music may be demystified if subjected to an empirical testing environment? Absolutely not. Even the previously stated testing is not completely void of value. The last ten years of testing the brain in all subjects surrounding music have yielded a trove of useful information. Laboratory mice have been included in the research: “Two species of ‘singing mice’ which display an unusually complex vocal repertoire exhibit high oxytocin receptor binding within regions related to social memory. Injection of oxytocin increased vocalization levels while oxytocin receptor infant knockout mice engage in fewer vocalization and show marked social deficits and higher stress levels.” [6] These findings at least establish the biological basis for a social component in music, and maybe even supports the notion that music plays an important role in creating social bonds.

Neuroscientists essentially portend to deal with ‘universal’ structures, by nature of their scope. The more they universalize musical elements, the less they are observing actual music, and they run the risk of trivialization all ‘findings’ therein. The ideal of music-based treatments is that they are noninvasive, have minimal or no side-effects, are inexpensive, convenient, and are completely ‘natural’. While the merit of this endeavor cannot be denied, let researchers admit that this reverse-engineering is in its fetal stages of development, where I contend it will remain until a more advanced treatment of musical elements can be introduced into testing. While it is delusional to attempt to incarnate an abstraction, to acknowledge an enigma and conduct research while remaining subject to it can be a step toward real understanding.


[1] Subotnik, Developing Variations: Style and Ideology in Western Music., Univ. of Minnesota Press, 1991, pg. 199

[2] Mona Lisa Chanda and Daniel J. Levitin, The Neurochemistry of Music, Trends in Cognitive Sciences, April 2013, Vol. 17, No.4, pg. 181

[3] Ibid. pg 186

[4] Ibid. pg 199

[5] Oscar Wilde, 1891

[6] Ibid. pg 188